6 CHEMISTRY (233)

4.6.1 Chemistry Paper 1 (233/1)

- 1. (a) X is water. : (1) or H_2O
 - (b) It is slightly soluble in water. : (1) and denser than air.
 - (c) Used in hospitals to resuscitate patients. : 1 ,
 - Used in welding when mixed with acetylene in the ocy-acetylene flame. : 1 20
 - Used by divers and mountaineers.
 - Rocket fuel, hospitals for breathing, steel making.

2. (a)
$$2\text{NaHCO}_{3(s)} \stackrel{\text{heat}}{\rightarrow} \text{Na}_{2}\text{CO}_{3(s)} + \text{CO}_{2(g)} + \text{H}_{2}\text{O}_{(g)}$$
 \vdots_{1}

(b)
$$2AgNO_{3(s)} \rightarrow Ag_{(s)} + 2NO_{2(g)} + O_{2(g)}$$
: 1)(

(c)
$$2\text{FeSO}_{4(s)} \rightarrow \text{Fe }_{2}\text{O}_{3(s)} + \text{SO}_{2(g)} + \text{SO}_{3(g)} :_{1})$$

- 3. Crush the seeds in a mortar : ¹_χ) using a pestle.
 - Add a suitable solvent (acetone / propanone : 1 20)).
 - Filter out the solid matter.: 1 2()
 - Evaporate the filterate to obtain oil. : 1 20
- 4. (a) Aluminium has a stronger metallic : (1) bond because it has more delocalised electrons than sodium. : $\frac{1}{2}$
 - (b) Sulphur has a ringed structure of S $_8$: (1) molecules whiles chlorine is diatomic. The forces in sulphur are stronger than chlorine. : $^1_{\chi}$)
- 5. (a) It does not sublime. :(1)
 - (b) Cut a piece of Sodium: 1 2() metal, place it on a deflagrating spoon, heat it briefly: 1 2() then lower it: 1 2() into a gas jar of chlorine. It will continue burning forming Sodium Chloride. : 1 2()

6. (a)
$$Cu_{2+(aq)} + 2e \rightarrow Cu_{(s)}$$
 : 1)

(b) 63.5 g require 2 x 96500 C

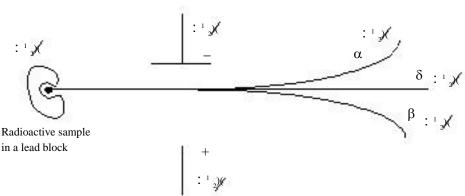
$$1.184g = 2 \times 96500 \times 1.184$$

 63.5

3598.6 coulombs : (1)

$$Q = 1t$$
 1799.2
 $3586.5 = 2 x t$ 60
 $3586.5 = t$ = 29.988

- 30 minutes


1799.3 s = t : $\frac{1}{2}$)(

: 1,)(

- (a)
- X Calcium carbide : (1) or CaC $_2$ (i)
- (ii) Y - CH $_2$ = CHCl Chloroethene : (1) or vinylchloride
- (b)
- Floor tiles: ¹₂₍)/
 Rain coats: ¹₂₍)/
 Plastic bags: ¹₂₍)/

Any 2

8.

Working diagram, α should be deflected less than β because of its heavier mass.

(Accept any other working diagram)

In water, HCl is ionised : $^1_{\ 2()}$ into H $^+$ and Cl $^-$ the Chloride ions are oxidised to chlorine gas by 9. potassium permanganete. : 1₂₍)

In methylbenzene, HCl remains in molecular: 1 2() form i.e HCl. The Chloride is not available for oxidation hence no reaction. $: {}^{1}_{2l}$

- 10.
- $T_{(1)}$ (a)
- 15 g : (1)(b)
- (c) Fractional crystallization : (1)
- 11. (a) $N_2H_{4(\sigma)} + O_{2(\sigma)} \rightarrow N_{2(\sigma)} + 2H_2O_{(\sigma)}$: (1)
 - (b) Bond breaking energy

$$163 + 4 (388) + 496$$

$$= 2211 \text{ kJ}$$

Bond making energy

$$944 + 4 (463)$$

$$= -2796 \text{ kJ}$$

Ethalpy change = Bond breaking + Bond making energies.

$$2211 + (-2796)$$

$$= -585 \text{ kJ/mol}$$

$$\vdots \quad _{1})($$

12. (a) The acidified permanganete will be decolourised: $\frac{1}{2}$ (purple to colourless)

The permanganate (VII) is reduced to manganese (II) ion. : $^{1}_{2}$ ()

- (b) (i) A white precipitate forms.
- : 1)(
- (ii) $Ba_{2+(aq)} + SO_{3 (aq)} \xrightarrow{2-} BaSO_{3(s)}$ \vdots 1)(
- 13. (a) $[Zn(NH_3)]^{2+}_{4}$: 1)(
 - $(b) \qquad Z{n_{2^{+}}}_{(aq)} + Mg_{(s)} \\ \longrightarrow Zn(s) \ + \ Mg^{2^{+}}_{(aq)} \\ \qquad \vdots \\ 1 \\ () \ ZnCl_{(2)(aq)} \ + Mg_{(s)} \\ \longrightarrow Zn_{(s)} \ + MgCl_{2(aq)} \\ (aq) \ + Mg^{2^{+}}_{(aq)} \\ (b) \ + Mg^{2^{+}}_{(aq)} \\ (c) \ + Mg^{2^{+}}_$
- 14. (a) Charles Law

At constant pressure, the volume of a fixed mass of gas is directly proportional to its absolute temperature. : 1)(

(b)
$$\frac{P_1 V_1}{T_1} = \frac{P_2 V_2}{T_2} \qquad \qquad \begin{array}{l} P_1 = 98.39 \text{ kPa} \\ V_1 = 146 \text{ d}\mu^3 \\ T_1 = 18 + 273 = 361 \text{ K} \end{array}$$

$$T_2 = \frac{P_2 V_2 T_1}{P_1 V_1} \qquad \qquad P_2 = 101 \text{ kPa} \\ V_2 = 133 \qquad V_2 = 133 \qquad \qquad V_2 = 133 \qquad \qquad V_3 = 120 \text{ cm}$$

$$T_2 = \frac{4849313}{14364.94} \qquad \qquad V_3 = 273.22 \text{ K}$$

- 15. (a) R and T: 1)(
 - (b) T: 1)(
- 16. X Zinc granules : (1)

 The gradient of the graph is less steep : (1) because there is less surface area. : (1)
- 17. (a) $N_{2(g)} + O_{2(g)} \rightarrow 2NO_{(g)}$: 1)(

levels of education

- (b) Because nitrogen is inert. : 1)(
- (c) Nitrogen (II) oxide is oxidised to Nitrogen (IV) oxide which is a pollutant. :(1)

- 18. (a) Water
- : 1)(
- (b) Bubbles of gas: $^{1}_{2(}$) and a white ppt: $^{1}_{2(}$) CO₂. : $^{1}_{2(}$ reacts to give CaCO $_{3}$: $^{1}_{2(}$)
- 19. (a) These are different forms carbon in the same physical state.
- : 1)(
- (b) The hexagonal graphite rings have weak Van der Waals forces between the layers that allow the layers to slide over each other: (1) while in diamond the atoms are held by strong Covalent bonds. : (1)
- 20. (a) The atomic radii increase with increase in atomic number. This is due to increase in energy levels. :(1)
 - (b) The group II elements have more protons than group I elements : (1) hence this increases the nuclear attraction for the outer electrons. : (1)

: 1)(

: 1)(

: 1)(

- 21. (a) Cu_{2+} : $_{1}$ or copper ions
 - (b) Cl- and OH- \vdots 1)(
- 22. (a) Copper pyrites \vdots 1)(chalcocite, malachite
 - (b) To concentrate the ore
 - (c) Brass
- Batteries : 1 3/
- 23. (a) $100 25 = 75 \text{ cm}^3$
 - (b) $CxHy + O_2 \rightarrow CO_2 \qquad H_2O$
 - 15 cm^3 75 cm^3 45 cm^3 : 1)(
 - 1 5 3
 - CxHy + $5 O_2 \rightarrow 3 CO_2 + 4 H_2O$
 - x = 3 H = 8
 - $C_{3}H_{8}$: 1)(
- 24. $Ca(NO_{3}) \rightarrow Ca^{2+} + 2NO_3$
 - RMM of $Ca(NO)_2 = 164$
 - Concentration of Ca(NO $_{3}$ $_{2)}$ = 4.1 g/l : $_{1}^{1}$

Molarity =
$$\frac{Conc. in g/l}{RMM}$$

= $41.$
 164
= $0.025M$: 1 Mole Ca(NO3)2 / 2 moles Nitrate / 2 # 0.025 m / 2 # 0.025

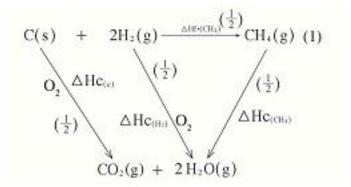
- 25. It would remain unchanged : (1)

 There is no water to form hypochlorous acid : (1)
- When aqueous sodium chloride is added to Ca ²⁺. There is no ppt :(1) while a white ppt is formed when aqueous sodium chloride is added to a solution containing Pb ²⁺.:(1)
- 27. (a) N. :(1) being a weak acid provides few H + to be neutralised by OH hence there is a slight increase in temperature. :(1)
 - (b) $CH_3COOH_{(aq)} + KOH_{(aq)} \rightarrow CH_3COOK_{(aq)} + H_2O_{(l)}$: 1)(
- 28. (a) Experiments 1 and 3. : (1)
 - (b) In experiment 1, the ions in K_2CO_3 are tightly held in position and cannot move :(1) while sugar solution does not have ions that can carry a current in solution.:(1)
- 29. $\frac{1}{1}H$ mass 18 : (1)
 - $\frac{2}{1}H$ mass 20 : (1)

4.6.2 Chemistry Paper 2 (233/2)

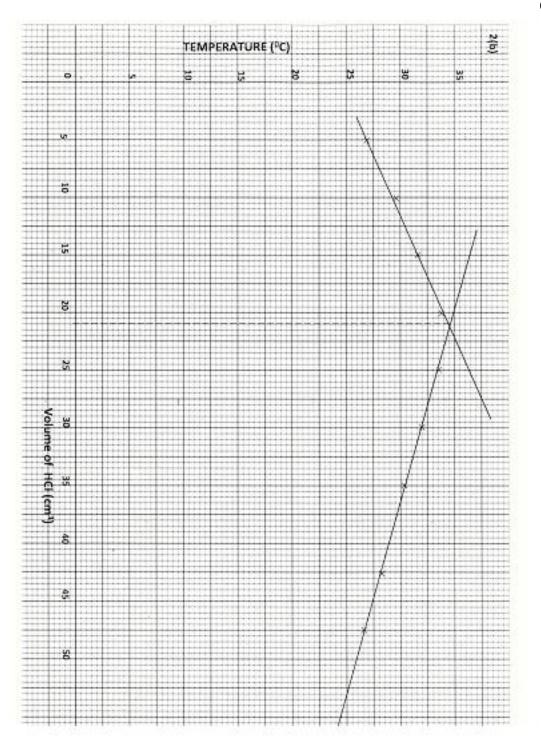
- 1. (a) (i) \mathbf{r} (1) it has the largest atomic radius with the weakest nuclear attraction for outermost electron (1).
 - (ii) Across the period the atomic radius decreases due to the increase in nuclear attraction (1). Number of electrons in **P** is greater than in **H**.

(iii)
$${}^{2}M(s) + {}^{2}H_{2}O(\ell) \longrightarrow 2MOH(aq) + H_{2}(g)$$
 (1)


Moles of H =
$$\frac{200}{24000}$$
 = 0.0083 $\frac{1}{2}$ Moles of M = 0.0083 # 2 = 0.0166

$$\frac{\text{Moles of M}}{\text{R} \Delta M} = 0 .0166$$

Mass of
$$M = 0.0166 \# 7$$


Mass of M = 0.117 g

- (b) (i) W (1) forms a basic oxide which forms an ionic bond (1).
 - (ii) \mathbf{Y} (1) the oxide is gaseous that forms a neutral solution (1).
 - (iii) **U** (1) the oxide is solid at room temperature, which is acidic with covalent bond (1).
- 2. (a) (i) This is the heat absorbed or evolved when one mole of any substance is formed from its constituent elements in their normal states. (1 mark)
 - (ii) I

II
$$3Hf^{\wedge}CH_{4}h = 3Hc^{\wedge}ch + 2 \ 3 \ Hc^{\wedge}H_{2}h - 3Hc^{\wedge}CH_{4}h$$
$$= -393 + 2^{\wedge} -286h + 890 \quad (1)$$
$$= -965 + 890$$
$$= -75 \text{ kJ mol} \qquad (1)$$

(3 marks)

(ii) I 34.8°C

^<u>_</u>h

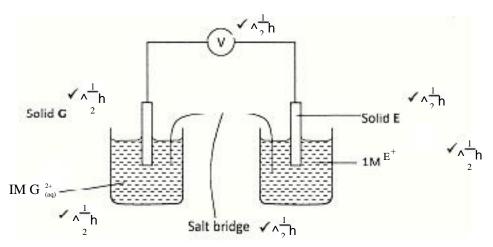
II 21.2 cm³ HCl

 $\frac{1}{2}$ h

(iii) 50 # 9.8 # 4.2

(1)

= 2058 Joules


(1)

- (c) The molar heat of neutralisation between a strong acid and a weak base is low because some of the heat is used to ionise (1) the weak base before neutralization. For strong acid and strong base they are completely ionised.
- 3. (a) (i) Hot compressed air (1)
 - (ii) To melt the sulphur and maintain it in molten state (1)
 - (iii) low melting point of sulphur (1)
 - insolubility of sulphur in water (1)
 - less dense than water
 - (b) (i) $S_{\text{ssh}} + O_{2^{\text{sgh}}} \$ SO_{2^{\text{sgh}}}$ (1)
 - (ii) To dry the SO₂ and air (1)
 - (iii) Vanadium (v) oxide (1) and platinum (1) or titanium
 - (iv) it provides the reactants (SO 2 and O2) with enough energy to react (1)
 - it removes heat from the product hence preventing decomposition (1) or conserves heat, or recycles heat or reduces cost of production.

Accept any other.

- (c) contributes to acid rain which corrodes buildings (1)
 - OR
 - causes aquatic solutions to be acidic hence affecting aquatic life etc.
 - poisonous/toxic
- (d) Turns black ^2 h conc H 2SO 4 removes hydrogen and oxygen from the sugar molecule leaving only carbon which is black ^2 h. Dehydration of sugar forms carbon which is black.
- 4. (a) (i) Gas Y is chlorine. (1)
 - (ii)
- sodium and hydrogen ions migrate to the cathode [^]21^h. The hydrogen ions are preferentially discharged, liberating hydrogen gas.
- chlorine and hydroxide ions migrate to the anode [^]21 h. The chloride ions are preferentially discharged liberating chlorine gas.
- the sodium ions migrate to the cathode through the membrane $^{\land}_{21}{}^{h}$.
- the sodium ions combine with the hydroxide ions to form sodium hydroxide $^{\circ}_{21}{}^{h}$.
- Glass making/paper manufacture (1), unclogging of drains, etching NaClo₃, Purification of bauxite.

(b) (i)

- (ii) EMF = 0.8 + 2.87
- (1)
- = 3.67 V
- (1)
- (iii) H will go into solution as H ²⁺ ions (1) since it is more reactive than E hence displacing E ⁺ ions which are deposited as solid (1).
- 5. (a) Test the acidity using a litmus pager. There will be no change on litmus when dipped into a solution of sodium sulphate (1). The litmus paper turns to red when dipped into a solution of sodium hydrogen sulphate (I).

OR

Add a solid carbonate to each solution. No effervescence observed when the carbonate is added to a solution of sodium sulphate. Effervescence is observed when the carbonate is added to a solution of sodium hydrogen sulphate.

Add dilute nitric acid ^21h to lead to form a soluble salt, Pb(NO 3)2, add a soluble salt sodium sulphate to form insoluble ^2 h, PbSO 4 and soluble Na SO separate by filtrating ^21h. Wash the PbSO 4 with distilled water to remove traces of ^2 h soluble salt, Na 2SO 4. Then dry the salt between filter papers ^2 h.

(c) (i)
$$I NH_4NO_{3^{4}h} \$ N_2O^{4}gh + 2H_2O_{g_{h}}$$
 (1)

II
$$2Fe(OH)_{3(S)}$$
 $Fe_{2}O_{3(s)} + 3H_{2}O_{(l)}$ (1)

- (ii) The colour changes from pale green to brown (1). The iron (II) is oxidised to iron (III) chloride by hydrogen peroxide (1)
- (iii) Carbon monoxide (1)

6. (a) A proton has a +ve charge while a neutron has no charge (1)

(b) Substances undergo radioactive decay or disintergration.

(c) - causes genetic mutation (1)

- can cause death (1)

- prone to cancer

(d) (i) I Atomic mass of a = 4

(1)

(1)

(1)

II Atomic number of b = 2

(ii) Fusion (1)

(e) (i) This is the time taken for half of the radioactive isotope to decay (1)

(ii) 288 <u>144 72 36 18 9</u>

`5 half lives (1)

 $\frac{40}{5}$ = 8 days (1)

7. (a) (i) Propanoic acid

(1)

(ii) Pent - 1 - ene

(1)

(iii) But - 1 - yne

(1)

(b) (i) Ethane

(1)

(ii) $C_3H_6Cl_7$

(1)

(iii) I Water/steam/Conc. H 2SO4

(1)

II Acidified potassium dichromate (VI)

(iv) $2CH_3CH_2CH_2OH + 2Na \$ 2CH_3CH_2CH_2ONa + H_2$ (1)

Cleansing agent has the hydrophilic $^{\wedge}$ h and hydrophobic ends $^{\wedge 1}$ h, the hydrophobic end is attracted to grease $^{\wedge}$ h while the hydrophilic end is attracted to water $^{\wedge 1}$ h during agitation the grease is pulled off $^{\wedge}_{21}$ h the cloth then surrounded by soap molecules $^{\wedge}_{21}$ h

4.6.3 Chemistry Practical Paper 3 (233/3)

Procedure I 1. Table 1 Time (Min.) 2 3 5 0 1 4 6 7 Temperature (°C) 23.0 26.0 33.0 35.0 35.0 30.0 34.0 35.0 $\frac{1}{2}$ mark for each correct entry, Maximum (3 marks) (3 marks) (a) (i) 37 35 33 31 Temperature °C 27 25 23, 3 4 5 7 Time/min

(ii) (I)
$$\Delta T = 35 - 23 = 12^{\circ}C$$
. (1 mark)

(II) 3 minutes 36 seconds.
$$(\frac{1}{2} \text{ mark})$$

(iii)
$$\Delta H = 50 \times 4.2 \times 12$$

= 2520 joules. (2 marks)

Procedure II

Table 2

	I	II	Ш
Final burette reading	24.50	25,00	34.20
Initial burette reading	0.00	1.00	10.20
Volume of solution C (cm ³)	24.50	24.00	24.00

(4 marks)

(a) Average volume =
$$\frac{24.5 + 24.0 + 24.0}{3} \sqrt{\frac{1}{2}}$$

= $24.17 \text{ cm}^3 \sqrt{\frac{1}{2}}$ ($\frac{1}{2} \text{ mark}$)

(b) (i) Moles of MnO
$$_{4}^{-} = \frac{0.02 \times 24.17}{1000} \sqrt{\frac{1}{2}}$$

= 4.83 x 10⁻⁴ $\sqrt{\frac{1}{2}}$ (1 mark)

(ii) Moles of Fe²⁺ = 5 x 4.83 x
$$10^{-4} \sqrt{\frac{1}{2}}$$

= 2.417 x $10^{-3} \sqrt{\frac{1}{2}}$ (1 mark)

(iii) Moles of Fe²⁺ in 250 cm³ = 2.417 x 10⁻³ x
$$\frac{10}{2}$$
 $\sqrt{\frac{1}{2}}$
= 2.417 x 10^{-2} $\sqrt{\frac{1}{2}}$ (1 mark)

(c) Molar heat of displacement =
$$\frac{2520}{2.417 \times 10^{-2}}$$
 $\sqrt{(1)}$ (1 mark)

= 104261.48 Joules
$$\sqrt{(1)}$$
 (1 mark)

2	(a)	(2)		
		(i)	Inferences	
		Observations		
		- White solid turns yellow	Probably CO ₂ gas given off.	
		 Splint extinguished On cooling solid is white 	∴ CO ₃ ²⁻ or HCO ₃ , ZnO formed	
		- Colourless, odourless gas.		
		(max. 1 mark)	(max. 1 mark)	(2 marks)
		(ii)		
		Observations	Inferences	
		- effervescence/bubbles	75738	
		- colourless, odourless gas	CO ₃ ² present	
		- colouriess, odouriess gas (1 mark)	(1 mark)	(2 marks)
		(iii)	Louisean	
		Observations	Inferences	
		 White ppt soluble in excess 	Zn2+ present	
		(1 mark)	(1 mark)	(2 marks)
	(b)	(i)		
	587.2	Observations	Inferences	
		White ppt insoluble in excess	Pb2+ or Al3+ Mg2+	
		(1 mark)	(1 mark)	(2 marks)
		(ii)		
		Observations	Inferences	
		- No effervescence	CO ₃ ² SO ₃ ² absent	
		- No white ppt	Pb2+ absent	
		(1 mark)	or	(2 marks)
			AI3+ and Mg2+ present	
			(1 mark)	
		(iii)		
		Observations	Inferences	(2 modes)
				(2 marks)
		White ppt (1 mark)	SO ₄ ² present (1 mark)	
		(1 mark)	(1 mark)	

123	(a)	Observations	Inferences	
		Melts and then burns with a sooty/	Long chain organic compound	
		smoky/Luminous flame/yellow flame.	or	
		(1 mark)		(2 marks
		8	$C = C$ or $H - C \equiv C - H$	
			(1 mark)	
	(b)	(i)		(2 marks
		Observations	Inferences	
		Not decolourised	ROH $C = C$ or $C \equiv C$ absent	
		(1 mark)	(1 mark)	
		Observations Effervescence/bubbling Colourless gas	Inferences Carboxylic acid present. H+or H ₂ O+ or RCOOH	(2 marks
		(1 mark)	n or n,o or keeoon	
			(1 mark)	
		Method used	Inferences	
		 Add 2 drops of universal indicator to solution. Match the colour of solution to the 	- pH is 1 or 2 - Solution is strongly acidic	(3 marks
		pH chart paper		
		- Read off pH.	1,000,000,000	