PHYSICS (232)

4.5.1 Physics Paper 1 (232/1)

- 1. 5.32 cm (1 mark)
- 2. magnitude of the force
 - The perpendicular distance between the force and the pivot. (1 mark)
- 3. Patmosphere = Pmercury + pair enclosed;

(3 marks)

4. (a) F = Ke;

$$20 = 0.5 \text{ K};$$

 $K = 40 \text{ Nom}$

 $K = 40 \text{ Ncm}^{-1}$ (2 marks)

(b) $F = 40 \times 0.86 =$ = 34.4 N:

(1 mark)

- 5. Weight of object in air
 - Weight of object when fully immersed in fluids

(2 marks)

6. Upthrust = weight in air - weight of object in fluid.

- (1 mark)
- 7. Wood is a poor conductor of heat; hence heat is used to burn paper, while most heat is conducted away by copper; hence paper takes long to burn.
- (2 marks)

8. Clockwise moments = anticlockwise moments;

$$0.18x = 1(50 - x) + 0.12(100 - x)$$

$$0.18x = 50 - x + 12 - 12x$$

$$0.18x = 62 - 1.12x$$

$$7.30x = 62$$

$$x = 47.69 \text{ cm};$$

(3 marks)

9. Air is compressible; so the transmitted pressure is reduced;

(2 marks)

10. The high velocity of the gas causes a low pressure region;

Atmospheric pressure is higher;

Pressure difference draws air into the region;

(3 marks)

11. Water molecules have a high adhesion forces; With glass molecules and hence rise up the tube while mercury molecules have greater cohesion;

Forces within than adhesion with glass hence do not rise up.

(2 marks)

12. Allow for expansion;

Water expands on cooling between 4° C and 0° C;

(1 marks)

13. Diffusion of the ink molecules;

(1 mark)

SECTION B

- 14. (a) increasing the angular velocity;
 - Reducing the radius of the path;

(2 marks)

(b) (i) Tension in the string;

(1 mark)

(ii) Arrow to centre of circle;

(1 mark)

(iii) Direction of motion of object changes and causes the velocity to change with time;

(1 mark)

(iv)
$$F = \frac{MV^2}{r}$$
;
= $\frac{0.5 \# 8^2}{2}$

$$= 16N;$$

(3 marks)

(c) (i)
$$V_2 = u^2 + 2as;$$

$$0 = u - \frac{2}{2} # 10 # 100$$

$$u = \sqrt{2000}$$

$$44.72 \text{ ms}^{-1};$$

(2 marks)

(ii)
$$V = u + at$$
;
 $0 = 44.72 - 10 \# t$

$$t = 4.472$$

Total time =
$$2 # 4.472$$

$$= 8.94s$$
;

(2 marks)

15. (a) Quantity of heat required to convert 1 kg of ice at 0° C to water without change in temperature;

(1 mark)

(b) (i)
$$E = Pt;$$

$$= 18000 J;$$

(3 marks)

(ii) Mass of water = 190 - 130 = 60g;

$$ml_f = Pt.$$

$$\underline{60}$$
 $l_f = 60 \# 60 \# 5$;

$$1 = \# 105 \text{ J/Kg};$$

(4 marks)

(iii) Heat from the surrounding melts the ice; (1 mark)

16. (a)
$$F = Ma;$$

 $F = 2 # 5$
 $= 10N;$

friction force =
$$12 - 10$$

= $2N$;

(3 marks)

(b) (i) OA - the ball bearing decelerates; as the upthrust increases to a maximum;

(2 marks)

AB - ball attains terminal velocity; when upthrust = weight;

(2 marks)

(c) (i)
$$VR = 2$$

(1 mark)

(ii) To change direction of effort;

(1 mark)

(iii) Efficiency =
$$MA #100$$
; VR

$$80 = \frac{MA}{2} # 100\%$$
 $MA = 1.6;$
 $1.6 = \underline{L}$

(3 marks)

17. (a) (i)
$$F = mg$$

= 10 # 10

= 100 N

Additional pressure = $\frac{100N}{100 \ cm} = 1 \ Ncm$ 2;

new reading = 10 + 1 = 11 N;

(4 marks)

(ii) Pressure has increased; because, when the volume reduces, the collisions between the gas molecules and walls of the container increases;

(2 marks)

(b) (i) Pressure =
$$11 \text{ Ncm}^{-2}$$

(1 mark)

(ii)
$$P_{1} = P_{2}; 2$$

$$T_{1} = T_{2}$$

$$\frac{1}{300} = 11;$$

$$300 = T_{2}$$

$$T_{2} = \frac{300 \# 11}{10} = 330k;$$

$$T_{2} = 57^{\circ} C$$

(4 marks)

www.kenyanexams.com 18. (I) - Reading decreases on spring balance; (a) (i) (II)- Reading on weighing balance increases. (ii) As the block is lowered, upthust increases; and hence it apparently weighs less; (4 marks) Upthrust - weight in air - weight in water (i) (b) 2.7 - 2.46 0.24 N;Reading in weighing balance = 2.8 + 0.24= 3.04 N;(2 marks) Relative density = weight in air; (ii) upthrust = 2.70.24 = 11.25; Density = R.d # density of water

Density = R.d # density of water = 11.25 # 1000= 11250 kgm^{-3} ; (3 marks)

(c) The hydrometer sinks more;
The density of the water is reduced; (2 marks)

SECTION A

- angle of incidence = angle of reflection = 0 (1 mark) 1.
- 2. larger hole acts as many small holes (1 mark) `many overlapping images of same object (1 mark)
- Within the magnet, N and S poles of the dipoles cancel out but at the end of the poles they 3. don't. (1 mark)
- 4. 2V(a) (1 mark)
 - (b) 1.6V (1 mark)

5.

Object at the intersection of incident ray;

Incident rays;

(2 marks)

Ray totally reflected by face AC (1 mark) 6.

$$i = 60$$
 hence $r = 60^{\circ} (1 \text{ mark})$

7. a = 1 and b = 0 (1 mark)

$$x = neutron$$
 (1 mark)

8.

$$\frac{Ns}{Np} = \frac{Vs}{Vp}$$
 (1 mark)

$$\frac{5}{} = \frac{Vs}{}$$
 (1 mark)

$$\frac{10}{V_{\rm S}} = \frac{12}{6V}$$
 (1 mark)

9. Each lamp on full voltage (1 mark) Failure of one lamp does not affect the others (1 mark)

- 10. X rays ionise air molecules between plates (1 mark)

 Lors move to plates of expectite sign.
 - Ions move to plates of opposite sign (1 mark)
- 11. Sun being hotter produces short wavelength infrared waves which penetrate glass; burning wood produces long wavelength infrared waves which do not penetrate glass.
- (1 mark)
- 12. K = E T (1 mark)
- 13. Arsenic shares 4 of its 5 electrons with germanium. (1 mark) the extra electron is free for conduction. (1 mark)

SECTION B

- 14. (a) $f_A = 10cm$ (1 mark)
 - (b) (i) to produce a magnified real image (1 mark)
 - (ii) to produce a magnified virtual image of the 1 st image. (1 mark)
 - (c) (i) move A so that the object is slightly outside f_A (1 mark)
 - (ii) move B so that the real image is within f_B . (1 mark)
 - (d) (i) $m = \frac{24}{16}$ $= \frac{3}{2}$ (2 marks)
 - (ii) $m = \frac{28}{4}$ = 7 (2 marks)
- 15. (a) Negative charges flow from earth to cap. (1 mark)
 - Negative charge neutralizes the positive. (1 mark)
 - (b) (i) $1 = \frac{1}{c_1} + \frac{1}{c_2}$ (1 mark)
 - $= \frac{1}{3} + \frac{1}{6}$ $= \frac{1}{2}$ (1 mark)
 - C = 2nF (1 mark)

(ii)
$$Q = cV$$

$$= 2 \times 4$$

$$=$$
 8nC (1 mark)

(1 mark)

(iii)
$$Q = 8nC$$
 (1 mark)

(c)

- radical field;

- Correct dirrection; (2 marks)

- 16. (a) (i) Energy = QV (1 mark)
 - (ii) Power = E = Qv (1 mark)
 - (iii) $I = \frac{Q}{t}$ (rate of flow of charge) (1 mark)

$$P = \frac{Q}{t}$$

$$P = I.V$$
 (1 mark)

(b) Power =
$$VI = 20 \times 60 (1 \text{ mark})$$

$$240 \text{ x I} = 1200 \text{ W}$$
 (1 mark)

$$I = \frac{1200}{240}$$

= 5A (1 mark)

4A 1 5A hence fuse will blow. (1 mark)

- 17. (a) (i) Thermionically by cathode (1 mark)
 - (ii) causing fluorescence on screen (1 mark)
 - (iii) (i) control brightness of fluorescence (1 mark)
 - (ii) to focus the electron beam (1 mark)

(b) 1 wavelength = 2 cm

$$period = 2 # 2 # 10 s$$
 (1 mark)

$$= 4 \# 10^{-3}$$

(1 mark)

$$f = \frac{1}{T}$$

(1 mark)

$$=\frac{1}{4 \times 10^{-3}}$$

(1 mark)

$$4 # 10$$
$$= 250 HZ$$

(1 mark)

18. (a)

- curved waves converging before focus
- (1 mark)

- diverging after focus.

- (1 mark)
- O cm trough and crest interference (2 marks) (b) (i)
 - (ii) +10 - crest and crest interference (2 marks)
- (i) (c) Waves produced are reflected at the fixed ends. (1 mark) Incident and reflected waves interfer constructively at antinodes. (1 mark) and destructively at nodes. (1 mark)
 - (ii) $m = \frac{2}{3} # 1.5$

 $1mm\bar{A}$

(1 mark)

- (a)
- (i)

- (b) coil moves to and fro (1 mark) force on coil varies direction as current varies in direction. (1 mark)
- (i) (c) dilute sulphuric acid (1 mark)
 - (ii) (I) Zinc ions go into acid leaving electrons on the plate (1 mark)
 - (II) Give up electrons to discharge hydrogen Ions. (1 mark)
 - (iii) Electrons flow from zinc plate to the copper plate. (1 mark)

www.kenyanexams.com 4.5.3 Physics Paper 3 (232/3)

1.

PArT A

(c)

Distance d (cm)	70	60	50	40
Time t for 20 oscillations(s)	24.3	25.8	26.7	27.5
Period T = $\frac{t}{20}$ (s)	1.22	1.29	1.34	1.38
T 4 (S 4)	2.22	2.77	3.22	3.57
d ² (cm ²)	4900	3600	2500	1600

(3 marks)

(1 mark)

(1 mark)

(1 mark)

Table 1

(6 marks)

(i) See graph (5 marks) (d)

Scale and axis

(1 marks)

Plotting

(2 marks)

Line

(1 mark)

(ii) Slope =
$$\frac{2.50 - 3.50}{(42 - 18) \# 10^2}$$
;
= $-4.2 \# 10^4 \$ \text{ cm}$; -2

(3 marks)

(iii) K =
$$\sqrt{\frac{4r^4}{4.2 \# 10^4}}$$

= 963 S ⁴cm ²-;

(3 marks)

d (i)

1. PArT B

(e)
$$l = 0.1 \text{ m}$$

 $b = 0.01 \text{ m}$ (1 mark)

$$(f) m = 0.06 \text{ kg} (1 \text{ mark})$$

(g)
$$p = \frac{0.06}{3} (0.1^{-2} + 0.01)^{-2}$$

= 2.02 # 10 4 - (2 marks)

(i) (I)
$$t = 75s$$
 (1 mark)

$$(II) T = 7.5s (1 mark)$$

(2 marks)

(III)
$$7.5 = 2r \sqrt{\frac{2.02 \# 10^{-4}}{G}}$$

 $G = 1.42 \# 10^{-4}$

unit not required.

2. PArT A

(b)
$$Vo = 3.0V$$
 (1 mark)

(d)

Voltage(V)	2.5	2.25	2.0	1.75	1.5	1.25
Time(s)	1.7	2.6	3.9	4.8	6.5	7.9

(ii)
$$t_1 = 6.4 \text{ S}$$
 (1 mark)

(f)
$$\frac{0.1110}{0.693 \# 2200}$$
 = 4200 X (1 mark)

PArT B

(h) (i)
$$L_1 = 47.4 \text{ cm}$$
 (1 mark)

(ii)
$$W_1 = \frac{0.474 \# 0.05 \# 10}{0.35}$$

= 0.68 N (1 mark)

6.4 # 10 6

(i)
$$(I)$$
 $L_2 = 28 \text{ cm}$ (1 mark)

(II)
$$W_2 = \frac{0.28 \# 0.05 \# 10}{0.35}$$

= 0.4 N (1 mark)

(j)
$$T1 = 26^{\circ}C$$

Accept (18 - 32°C) (1 mark)

(k) (i)
$$L_3 = 28.5 \text{ cm}$$
 (1 mark)

(ii)
$$T_2 = 83^{\circ}C$$

Accept (60 - 95°C) (1 mark)

(iii)
$$W_3 = \underbrace{0.285 \# 0.05 \# 10}_{0.35}$$

= 0.41 (1 mark)

(1)
$$K = \frac{(0.68-0.4) - (0.68-0.41)}{(0.68-0.41)(83-26)}$$

$$= \frac{0.28 - 0.27}{0.27 # 57}$$

$$= 6.5 # 10 - 4K^{-1}$$
(2 marks)

(e) (i)

